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ABSTRACT

Radar or satellite observations of an area generate sequences of rain-rate maps. From a gridded map a
histogram of rain rates can be obtained representing the relative areas occupied by rain rates of various strengths.
The histograms vary with time as precipitating systems in the area evolve and decay and amounts of convective
and stratiform rain in the area change. A method of decomposing the histograms into linear combinations of
a few empirical distributions with time-dependent coefficients is developed, using principal component analysis
as a starting point. When applied to a tropical Atlantic dataset (GATE), two distributions emerge naturally
from the analysis, resembling stratiform and convective rain-rate distributions in that they peak at low and high
rain rates, respectively. The two “modes” have different timescales and only the high-rain-rate mode has a
statistically significant diurnal cycle. The ability of just two modes to describe rain variability over an area can
explain why methods of estimating area-averaged rain rate from the area covered by rain rates above a certain

threshold are so successful.

1. Introduction

Meteorological radars can be used to generate images
of rain-rate fields over areas hundreds of kilometers in
diameter. Satellites provide images over even larger
domains, though generally less frequently and at lower
spatial resolution. For some purposes, which will be
discussed later, it can be convenient to ignore the spatial
structure of the rain field and to concentrate on the
histogram of the rain rates in the field; that is, the field
is gridded, a bin size for rain rate is selected, and the
number of grid points where rain rate falls in each of
the bins is computed.

The rain-rate histogram for an area varies from mo-
ment to moment, as storms grow and decay and syn-
optic conditions evolve. Climatologically, rain-rate
distributions are observed to change with the time of
day. The changes are more evident for large rain rates
than for small ones (e.g., Gibbins 1990), presumably
because convective activity tends to be affected by the
diurnal cycle of heating more strongly than the longer-
lived stratiform precipitation, and convective rain is
associated with higher rain rates. In order to charac-
terize the effects of the diurnal changes in heating on
rain activity, an economical description of the changes
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in the distribution of rain rates in terms of just a few
parameters was needed.

Another motivation for this work arose from the
attempt to understand the success of the area~time in-
tegral (ATI) method of estimating area-averaged rain-
fall. This method, suggested by the results of Chiu
(1988) and further developed by Atlas et al. (1990),
assumes that the area-averaged rain rate R can be es-
timated from the fraction f, of the area where rain rate
exceeds a specified threshold 7, using the linear rela-
tionship

R~ S.,f,. (1.1)

The threshold 7 is chosen to minimize the errors in
the estimates. The coefficient S, can be shown to de-
pend on the histogram of rain rates in the area in a
straightforward way, and its sensitivity to changes in
the histogram is of interest in evaluating the robustness
of the ATI method to changes in the characteristics of
rain with time of day, season, or geographical location.
Short et al. (1993a) have shown empirically that the
probability distribution of rain tends to vary so that
the means and standard deviations of the distributions
increase and decrease together, and that .S, tends to be
insensitive to just such variations. Kedem and Pavlo-
poulos (1991) and Short et al. (1993b) have shown
that the threshold that minimizes the variability of .S,
due to sampling fluctuations in the histogram tends to
predict the optimal choice for the threshold = rather
well.

A method of describing how the distribution of rain
rates in an area changes with time will be investigated
here by assuming that the rain in the area is composed
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of several different “types” of rain, each of which has
a characteristic distribution of rain rate associated with
it. The distribution of rain rates in a field varies with
time under this assumption because the relative
amounts of the different types vary. This can be true
only if the area is sufficiently large that it contains, for
example, many convective cells at different stages in
their evolution. The areawide rain-rate distribution is
assumed to vary more because the number of cells
changes than because of the evolution of individual
cells, since a change in the distribution due to the evo-
lution of one cell is compensated on average by changes
in other cells at different stages in their evolution.

Houze (1981), in a survey of atmospheric precipi-
tation systems, found that over many parts of the globe
and in different climatic regimes, a classification of
precipitation type as either stratiform or convective
could provide a very useful first-order description of
precipitation characteristics. Our approach to describ-
ing changes in the distribution of rain rates was in part
motivated by Houze’s (1981) analysis.

The decomposition of probability distributions into
linear sums of parametric distributions (e.g., gamma,
lognormal) is a well-explored topic in the statistical
literature. Sansom and Thomson (1992) describe a
particularly interesting application of these methods to
the 15-yr-average distribution of pluviograph data from
a New Zealand rain gauge. They find that their data
are naturally decomposable into two rain types.

A time-dependent linear decomposition of rain-rate
distributions into data-adaptive, empirical probability
distributions is investigated here. The component
probability distributions are not restricted to a partic-
ular class of parameterized distributions. This initial
approach leads to a numerically difficult problem, but
by introducing some approximations an orthogonal
basis for the expansion of the time-dependent histo-
grams is obtained that is easily and naturally recast
into an approximation of the desired expansion.

The method is described in detail in the next section.
In section 3 the method is applied to radar-derived
rain maps obtained in the Global Atmospheric Re-
search Program’s Atlantic Tropical Experiment
(GATE). Section 4 discusses uses of the method and
possible avenues for future research, and section 5
contains some conclusions. Mathematical details are
given in an appendix.

2. Decomposing time-varying histograms into
component probability distributions

a. General approach

Suppose that a time series of gridded images is avail-
able, each grid point representing rain rate averaged
over its associated grid box. The rain rates R(x, t) at
all grid points x in an image at time 7 are histogrammed,
and n(r;, t) is the number of grid boxes with rain rates
falling in bin i, with the /th bin delimited by
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r,-<R<r,-+1. (21)
The total number of counts in all B bins is
B
Ny = 3 n(ri, 0). (2.2)

i=1

It is hypothesized that a large area contains rain of
different types in different regions, and that each type
is associated with a different rain-rate distribution. Rain
rates for stratiform rain, for example, are typically
much lower than rain rates for convective systems. Be-
cause the dynamical development of the different types
of rain is different, the relative amounts of the types
will vary from image to image. This variation will allow
us to extract the component distributions associated
with each type.

It is thus proposed to describe the time variation of
n(r;, t) by an expression of the form

M
n(ria t) =~ z na(t)pa(ri),

a=1

(2.3)

hoping that only a few “modes” p,(r;) are needed to
capture the behavior of n(r;, t) adequately. [ The term
“component” would have been preferable to “mode”
to describe the p.(r;), but the term “principal .com-
ponents” is already used for the eigenvectors of a co-
variance matrix.] Expression (2.3) may be interpreted
to mean that out of the N(¢) grid points, 7n,(?) of them
are occupied by rain of type «. Some constraints are
imposed on the n,, p, by their physical interpretation:
it is required that, for each «,

n(t)=0; (2.4a)
plr)=0, i=1,...,B; (2.4b)
(2.4¢)

Zpa(ri)z L.

If the description of n(r;, t) in (2.3) were perfect, it
would follow that

20 n(t) = N(1). (2.5)

This will not, however, be imposed as a constraint; the
degree of agreement with (2.5) will instead be viewed
as one measure of the success of the description.

Because of the physical interpretation of the p.(r;),
they would be expected to be somewhat disjoint. For
example, to the extent that the distributions are iden-
tifiable as stratiform or convective, a “stratiform” py(r;)
would be expected to diminish rapidly at large rain
rates relative to a “convective” distribution p.(7;). The
relative strengths of the two distributions would be re-
versed at low rain rates. These conditions might be
written as
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M small for r; large; (2.6a)
pAri)
Ec—(-r—i—) small for r; small. (2.6b)
ps(ri )

To simplify the presentation, introduce the vector
notation p,= {p(r:);i=1,...,B}andn(?)={n(r;,
t);i=1,...,B}.Our task is to find a set of vectors
P.. that describe the time-dependent histogram data n(¢)
with a minimum amount of error. To express this, re-
write (2.3) as

n(?) = ng(r) + €(2), (2.7)

where

ng(1) = 2 n(1)pa (2.8)

is the expected histogram count under our assumptions,
and «(¢) is the error in the description. A global measure
of the error of the description is needed. A simple global
measure of error would be just the total squared error
2. €(1)e(t), where the prime indicates vector transpose.
A better measure of error, suggested by a standard ap-
proach to fitting distributions to a histogram of inde-
pendent samples, will be investigated here instead. Al-
though the assumption that the rain-rate histograms
are composed of independent samples is not entirely
valid in our case, it suggests a measure of error that
has many desirable features that will be discussed later.

If the expected number of counts in bin { is ng(r;,
t) and the counts are independently distributed, then
the error €(r;, t) in (2.7) is normally distributed in the
limit of a large number of samples, with expected vari-
ance ng(r;, t); see Cramér (1946), for example. This
suggests using as a measure of the goodness of fit the
weighted-squares quantity

e2(r;, e(r, 1)
ne(ri 1)’

6 = Z E (2.9)

with the property that in the limit of a large number
of independent samples it is distributed as a chi-squared
variable (Cramér 1946). It is standard statistical prac-
tice to fit parameterized distributions to sample his-
tograms by minimizing expressions like (2.9). Such
fits correspond to maximum-likelihood estimates of
the sample distribution. An example of this approach
and a discussion of some of the effects of sample cor-
relation on the interpretation of & is given by Kedem
et al. (1990). In general, both the expected mean and
variance of & are inflated by sample correlations over
what they would be if the samples were independent.

Given expression (2.9) to minimize, it is in principle
a straightforward matter to find the distributions p,
and corresponding time series #,(¢) that minimize &,
subject to the constraints (2.4). In practice, however,
because & is not a quadratic function of the unknowns,
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standard numerical procedures for least-squares prob-
lems are not applicable, and finding the minimum is
numerically difficult.

b. An approximation and a new basis

An approximation to the true solution can be ob-
tained by replacing the denominator of (2.9) with its
average value,

ne(ri, 1) = N(t)p(r:), (2.10)

where N(¢)is defined in (2.2) and p(r;) is the frequency
distribution for the entire rain-rate dataset,

> n(?)
PESNG)’

(2.11)

normalized to 2; p(#;) = 1. This approximation can
be viewed as a first step in an iterative approach to
minimizing (2.9).

With this approximation, n,(t), p, must now be
found that minimize

[n(r13 I) - z na(t)z)a(ri)l2
= = 2.12
b E Z N(t)p(r:) (2.12)
This can be written in vector notation as
[n(2) — ng()]'W[n(z) — ng(2)]
Z NGD) , (2.13)
where the diagonal weighting matrix
- Oy
W= oo™ (19

has been introduced, §; is the Kronecker delta, and
nz(t) is defined in (2.8).

It is a remarkable fact that the problem of minimiz-
ing (2.13) can be converted into a simple matrix ei-
genvalue-eigenvector problem if one is willing to relax
the constraints (2.4). Because the solutions are infor-
mative and so easy to obtain and can serve as a first
guess for the numerically more difficult problem of
minimizing (2.9), their properties will be investigated
here.

If the modes p, that minimize (2.13) were known
in advance, finding the corresponding time series 7,(Z)
that minimizes (2.13) would be identical to the stan-
dard linear least-squares problem. The solutions for
n,(t) are obtained by setting the derivatives of 6, with
respect to each n,(¢) equal to 0. This gives, for each «
and ¢,

2 (PW?p)n, (1) = pWn(z).  (2.15)

This is a linear equation for the n,(¢) that can be solved,
albeit in terms of the unknowns p,. The solutions of
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these equations are not, however, guaranteed to be
nonnegative: that is, they may not obey constraint
(2.4a) at all times ¢. We will nevertheless proceed using
these solutions, substituting them in (2.13) and then
attempting to solve for the set of p, that minimizes
(2.13). The solutions will then be examined to see
whether the violations of the constraints (2.4), if any,
are acceptable or not.

To this end, it is convenient to expand the p, in
terms of a new basis set of vectors,

P = 2 CapXgs (2.16)

B

where the vectors x4 are orthonormal with respect to
the weighting W?;

x,Wi, = 34, (2.17)
so that the coefficients c,s are determined by
Cag = p:,sz,g. (2.18)

The “change of basis’ p,, —> x, diagonalizes (2.15) and
enables it to be solved easily:

nt) = 2> mg(t)(c“')ga, (2.19)
8
with (€),s = a5, €€ = 1, and
ma(t) = x;W2n (). (2.20)

If this solution for 7,(?) is substituted in (2.13),
[n— 2 (x;W?n)xs'W[n — 2 (x,W?n)x,]
8 ¥
N(1)

o=2

4

(2.21)

is obtained, where indication of the dependence of n
on ¢ has been omitted. It is shown in the appendix that
the problem of obtaining the unknown vectors x; that
minimize (2.21) reduces to a simple eigenvalue prob-
lem: Define the matrix

n()n’'(2)

=230

(2.22)
and obtain the eigenvectors ¥, of the symmetric matrix
WCW,

WCW\% = }\51l/ﬂ;
then a basis set Xz that minimizes (2.21) is just
x5 = Wiy, (2.24)

where the subset of M eigenvectors with the largest
eigenvalues is chosen.

As mentioned above, however, the constraints (2.4)
may possibly not be satisfied in this approximation.
The solutions for n.(f) may be negative sometimes,
and a satisfactory set of coefficients c,g in (2.16) for
combining the vectors x; to form a set of nonnegative

(2.23)
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p. may not exist. If, however, there exists a set of modes
p. that describes n(¢) with little error [see (2.3)], the
approach above would find them.

The approximation (2.10), although introduced out
of necessity, has resulted in the generation of a basis
set xg with a very appealing set of properties. Four of
them are given here:

1) As shown in (A.6) in the appendix, when com-
bined with (2.24) above, the first vector of the basis
set is identical to the average frequency distribution of
rain rate,

X; =P, (2.25)

with associated eigenvalue A\, = 2, N(¢). This means
that the modes p,, formed from the basis set using (2.16)
will always be able to be combined to describe the av-
erage histogram (2.11) perfectly. The basis vectors xg,
8 = 2, describe deviations of the image histogram from
the average histogram.

2) The orthogonality of the basis set x5 and the result
(2.25) imply

2 xr;)=0, B=2, (2.26)

as can be shown by setting v = 1 in (2.17).
3) The normalization of the p,,, (2.4c), and (2.26)
above imply that for all «, in (2.16),

e = L. (2.27)

4) Since the basisset {xg; 8= 1,. .., B} iscomplete,
n(¢) can be expanded in terms of the xg4,

B
n() = 2 mg(t)xg,
g=1

with the coefficients m; defined in (2.20). Using (2.25)
and (2.26) and the definition of N(¢) in (2.2), it follows
immediately that

(2.28)

my (1) = N(¢). (2.29)

The first coefficient in the expansion (2.28) is thus just
the total number of counts in the histogram.

¢. Obtaining the modes p,

It has been shown how to obtain a basis set of vectors
x; that it is hoped may be combined according to (2.16)
to obtain the modes p,. The basis set has the property
that linear combinations formed from it are able to
describe histogram variations with minimal error, as
measured by (2.13), with (2.8) replaced by

M
ng(1) = 2 mg(t)xg
p=1

M
= N(t)p + 2 mg(t)xg,
8=2

(2.30)
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using (2.25) and (2.29). If an economical description
of the variability of rain-rate histograms is sought,
expression (2.30) may be sufficient. As discussed above,
however, values of nz(r;, t) obtained from (2.30) may
sometimes be negative.

To obtain the modes p,, the coefficients in (2.16)
must be chosen appropriately. Equation (2.16) may
now be written

M

X, + 2 CogXp
a=2

Po

M
P + z Caﬁxﬁa
8=2

(2.31)

using (2.27) and (2.25). If just two modes were suffi-
cient to describe the histogram variability, two coefhi-
cients would need to be specified, one for each of the
modes. Unfortunately, because an approximation has
been introduced that linearizes the problem, and be-
cause the constraints (2.4a) and (2.4b) have been tem-
porarily relaxed, the coefficients are not uniquely de-
termined. The only guidance available for choosing
the coefficients comes from the constraints. Note that
the normalization constraint (2.4c¢) is automatically
satisfied by (2.31) because of (2.26).

To proceed, some experience with the behavior of
this approach using rain-rate data is needed, and the
behavior of the technique using GATE radar data will
be explored in the next section. In order not to conclude
this section leaving the question of how to choose the
coefficients unanswered, we summarize our experience
here for the case where we limit ourselves to just two
modes (M = 2). The first vector x;(r;) is fixed by
(2.25). The vector x,(r;) generally changes sign once
as r; increases. As a result, the condition p,(r;) = p(r;)
+ ¢c.oX2(r; ) 2 0 places bounds on ¢, of the sort

—a<cp<b. (2.32)
It will be found that if the choices ¢;» = —a and ¢y,
= p are used, then two modes p,(r;) are obtained that
g0 to zero, respectively, for large and small rain rates
r;, agreeing with the observational experience for strat-
iform and convective rain summarized in (2.6). The
resulting time series n,(¢) determined from (2.19) and
(2.20) sometimes go negative, but mostly for cases
where the number of counts N(¢) is low and the his-
tograms are likely to be ““noisy.” The portion of time
for which the n,(¢) are negative increases if the coef-
ficients are chosen inside the limits (2.32) instead of
at the boundaries, and, by that measure, these choices
are less desirable. It is our judgment, based on this,
that a correct, but numerically difficult, minimization
of (2.9) obeying the constraints (2.4) leads to unique
modes p,, similar to what is obtained with our ap-
proximation scheme. This has been our experience in
the few cases with which we have experimented. The
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behavior of the method with actual data is explored
next.

3. Principal modes of variation of GATE rain

The GATE dataset analyzed here was derived by
Hudlow and Patterson (1979) from radar measure-
ments taken in the tropical Atlantic off the west coast
of Africa during the summer of 1974. The radar data
were converted into rain rates R(x, ¢) on a 4-km grid
covering a circle 400 km in diameter centered on
8°30'N, 23°30'W, with each gridpoint value repre-
senting the instantaneous rain rate averaged over a 4
km X 4 km box. Only the portion of the rain-rate field
bounded by a 280-km square centered in the GATE
area is used. The square contains 4900 grid points.
Rain rates are binned logarithmically into 36 bins, with
the bin boundaries in (2.1) given by

r,=0251mmh™!,

ro= 103070, =1 36,
g = 106 mm h_l,
r3; = 0. (3.1)

The bin sizes were chosen to conform to the digitization
of rain rates in the dataset. Note that zero rain rates
are excluded from the histogram. Their inclusion will
be discussed later.

Phase 1 of GATE (extending from 28 June to 16
July 1974) contains 1716 rain-rate maps at intervals
of approximately 15 min, with occasional gaps. His-
tograms n(r;, t) were obtained for each map. The co-
variance matrix of the histograms was computed
weighted as in (2.22), and the eigenvalues obtained as
specified in (2.23). The eigenvalues (divided by the
number of images 2, 1 = 1716) are shown in Fig. 1.
They decrease rapidly, and the first two account for

1000 Frrrre [T T T T T

77T

100 3

Eigenvalue
S
T
1

Rank

FiG. 1. Eigenvalues of GATE phase I weighted histogram covari-
ance matrix shown in Eq. (2.23), normalized by the number of his-
tograms (1716).
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TABLE 1. Histogram variability described by first few eigenvectors
for GATE phase I, based on 1716 rain-rate fields (280 km X 280 km
at 4-km resolution).

Number M of Percent trace ‘0
eigenvectors “explained” 2.1
0 0 664

1 80.2 131

2 90.7 61

3 92.8 47

91% of the trace of the matrix being diagonalized, as
shown in Table 1. Also shown in Table 1 is the average
goodness of fit per histogram as measured by &g/
(Z, 1). To the extent that 1) the quantity & in (2.9)
is distributed as a chi-squared variable, 2) the samples
counted by the histograms are independent, and 3) the
quantity & is approximated by &, in (2.12), 6, would
be expected to equal the “degrees of freedom” B 2, 1
less the number of parameters in the fitting procedure
(see, e.g., Cramér 1946). It might therefore be expected
that 64/(2,1) =~ B— M = 36 — M. The numbers in
the third column have not dropped to this level even
with three eigenvectors, but because of the approxi-
mations involved and the spatial correlations, which
tend to increase &, these numbers can at best serve as
a qualitative measure of the ability of the eigenvectors
to describe the variability of the histograms. It is clear,
however, that with just two modes much of the vari-
ability of the histograms is being captured. Limiting
the description to two modes has the additional benefit
that the modes are easy to construct and the two-mode
description is straightforward to interpret and highly
informative.

a. Principal modes

The first two orthogonal basis vectors x; = p and x,
are shown in Fig. 2. They must be combined according
to (2.31) to form the principal modes of variation p,,
subject to the nonnegativity constraint (2.4b). In order
to satisfy the constraint, the coefficients ¢, must lie in
the range

—0.372<¢,, <0.761, a=1,2. (3.2)

Several distinct lines of reasoning lead to choosing the
two boundary values in (3.2) for the values of ¢,,:

e This choice produces two nonnegative modes with
minimum overlap, as measured by p,ps (@ # 3); that
is, they are as nearly “disjoint” as possible.

¢ This choice yields two modes that conform to the
expectation that stratiform rain will have relatively few
counts at high rain rates, whereas convective rain will
show relatively few low-rain-rate counts [cf. (2.6)]. In
fact, the ratio x, (r;)/x2(r;) tends to level off to a value
0f0.372 at high rain rates and —0.761 at low rain rates,
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0.04
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ftotaaal 2 a1 2l

-0.04 Laa—t il L " N
1 10 100

Rain Rate (mm h™)

FIG. 2. First two basis vectors from Eq. (2.24) for describing
GATE phase I histogram variability.

indicating that combining them with these coefficients
would produce modes that look like stratiform and
convective rain distributions.

e When the time series #,(?) in (2.3) that result from
this choice are obtained from (2.19), some values are
negative, contrary to the constraint (2.4a). This issue
will be discussed more later—but if values of ¢, interior
to the bounds in (3.2) are used, the number of occur-
rences of negative n,(t) increases. This problem can
be minimized by choosing the c,; at the boundaries.

These arguments suggest constructing the two modes
(3.3a)
(3.3b)

pr = x; — 0.372x,,
Py = X + 0.761X2,

which are shown in Fig. 3. The labels L for “low” and
H for “high” are used to indicate the rain rates pri-

GATE Phase |
0.07 |- E

0.06

0.05

0.04 |-

Probability

0.02

0.01 -

R (mmh™)

FiG. 3. Principal modes of variability (M = 2) of GATE phase 1
histograms, derived from the basis vectors in Fig. 2. Labels L for
“low” and H for “high.”
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marily associated with each mode. It is tempting to
refer to the two rain-rate probability distributions as
“stratiform” and “‘convective,” since there is so much
observational evidence that rain can often be mean-
ingfully classified as one or the other type, as discussed
in the introduction, and these two distributions suc-
cessfully describe a considerable amount of the vari-
ability of the distribution of rain rates over an area and
are suggestively dominated by low and high rain rates,
respectively. Because there are such strong dynamicat
connotations to the terms, however, and because these
modes are derived from statistical rather than structural
considerations, we will limit ourselves to the labels L
and H, while noting the strong associations with the
characteristics of stratiform and convective rain.

The rain rates represented by p; are generally less
than 10 mm h™!, as was found for anvil rain in GATE
in five cases analyzed by Leary and Houze (1979).
The distribution py; peaks near 5 mm h™' and accounts
for nearly all rain rates above 10 mm h™'. It is fit rather
well by a lognormal distribution with parameters u(1nr)
= 1.7 and o(Inr) = 0.985, when r 1s in units millimeters
per hour. The mean rain rate associated with each
mode is

’—';xE z i:l'pa(ri)s (3'4)

7

where F; is the average rain rate for bin / (recall that r;
is the lower boundary of bin /). Values are shown in
Table 2.

b. Time series n(t)

The choices (3.3) for p; and py imply corresponding
time series #; (¢) and ny(t) based on (2.19). Figure 4
shows a scatterplot of ny(t) versus #n;(t) for GATE
phase 1. A substantial number of values of ny(¢) are
negative (700 of the 1716 points). This can be dealt
with in several ways:

e The negative values occur because the least-
squares fit to the histograms, based on (2.19) and
(2.20), was obtained ignoring the nonnegativity con-

TABLE 2. Characteristics of two principal modes based on GATE
phase I data. See text for caveats concerning “stratiform” and
“convective™ labels. Column 2 shows average rain rate defined in
Eq. (3.4). Column 3 shows correlation times of », and ny, column
4 shows relative areas occupied by the two types, and column 5 shows
the relative rain volumes attributable to each type. The 95%
confidence interval for both relative area and rain volume is estimated
to be +0.19.

Relative
Fo Correlation  Relative rain

Mode (mm h™") time (h) area volume
L (“stratiform™) 2.6 1t 0.65 0.36
H (“convective™) 8.8 6 0.35 0.64
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FiG. 4. Scatterplot of coefficients of p, and py in Eq. (2.3),
ignoring constraint Eq. (2.4a).

straint (2.4a); the constraint could simply be reimposed
by setting all negative values to zero and adjusting the
other values to satisfy (2.5). Because the negative values
occur mostly when the other mode dominates (i.e., n;,
» |nyl|), this adjustment has a relatively minor impact
on the quality of the fits.

e Alternatively, the coefficients c,, could be per-
mitted to move outside the bounds given in (3.2), so
that the modes p,(r;) begin to have slightly negative
values at some rain rates r;. With relatively small
changes in ¢,,, the number of occurrences of negative
values of #ny(¢) decreases dramatically. The negative
values of p.(r;) that result can be set to zero.

o The best approach would be to take the results so
far as a starting point and to return to the constrained,
nonlinear problem of minimizing & in (2.9). We have
experimented with this and find that the solution tends
toward a point somewhere between what is obtained
following the first two approaches above—but the nu-
merical effort required to find the minimum is greater.

The first approach above, adjusting negative values
of n, to zero, is both simple and produces results that
are close to what would be obtained from a more exact
treatment, based on this limited experience. It will be
followed here.

There are five values of n,(¢) with particularly large
negative values, all occurring between 1630 and 1745
UTC 7 July (Julian day 188). The highest area-aver-
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FI1G. 5. Evolution in time of n.(¢) and ny(t) [constrained by Eq.
(2.4a)] during portion of GATE phase 1. Highest volume of rain fell
during day 188. Shown below is the coefficient m;(¢) in Eq. (2.28),
a measure of what is not captured by the two-mode expansion.

aged rain rates observed during GATE occurred during
these few hours. The histogram for 1645 UTC, for ex-
ample, when #n; is most negative, peaks at approxi-
mately 15 mm h™! and cannot be described well by a
mixture of p, and py (see Fig. 3). There are clearly
some extreme events that cannot be fully captured by
Jjust two modes.

A portion of the time series n; (¢) and ny(¢) for Julian
days 188-191 is shown in Fig. 5. The constraints n,(¢)
= 0 have been imposed on the series, as discussed
above. There appears to be some suppression of low
rain rates when the strongest convective events occur.
This is not an artifact of the fitting process: the dip can
also be seen in a plot (not shown) of the area covered
by rain rates below 6 mm h~!—there is a sharp drop
during the period of most intense rainfall. It is not clear
whether this is dynamical in origin or an artifact due
to radar attenuation. Note that this is the same event
mentioned above that is responsible for the points n;,
< 0 in Fig. 4.

The area of high-rain-rate activity, as represented by
ny(t), develops and dies out much more rapidly than
the “stratiform” rain area. The correlation times, de-
termined by the lags when autocorrelations fall to 1/
e, are shown in the third column of Table 2. The cor-
relation time of the area of light rain is nearly twice
that of the area of heavy rain.

The relative areas of the two types, determined from

A, =2 nlt), (3.5)

are shown as fractions 4,/(Ay + A;) in Table 2. The
corresponding rain volumes contributed by the two
types, as fractions of the total arcawide rainfall in the
280-km square, are shown in the last column of Table
2. They are estimated to be uncertain by +0.19 (95%
confidence interval ), based on their correlation times,
means, and variances. Cheng and Houze (1979) esti-
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mated that stratiform rain contributed about 50% of
the rain that fell during GATE phase I. In their analysis,
the area averaged over was a circle 520 km in diameter,
considerably larger than the area analyzed here, and
included more of the intertropical convergence zone
(ITCZ); only data from times near 1200 UTC were
used, and the definition of convective rain was based
on identification of rapidly changing, intense, localized
radar echoes. There is a strong diurnal cycle in ny()
in phase I. When the relative rain volumes due to types
L and H were recomputed for the period 1000-1400
UTC, the rain volume fraction due to low rain rates
decreased to 0.28, which suggests that the fraction of
total rain attributable to stratiform rain would have
been higher in GATE than Cheng and Houze (1979)
estimated had their analysis not been limited by prac-
tical constraints to a portion of each day.

¢. Other measures of goodness of fit

The quality of the descriptions of histogram vari-
ability can be examined in more detail by defining the
“bin-by-bin” quantity

[n(ri’ t) - Z na(t)pa(ri)]z
Golr) = 2 NP ’

in terms of which &4 = 2, &y(r;). A graph of 6y(r;)/
(Z, 1) is shown in Fig. 6 for one-, two-, and three-
mode expansions. As discussed at the beginning of this
section, if the histograms were computed from spatially
uncorrelated, independent samples and if &, =~ &, we
would expect &o(7;)/(Z, 1) = 1 for satisfactory fits.
Histogram counts here are unfortunately not indepen-
dent, and correlations tend to increase the value of 6.
Nevertheless, with just two modes, values near 1 are

(3.6)
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FIG. 6. A measure {Eq. (3.6)] of average error of description of
histogram values for each rain-rate bin for one-, two-, and three-
mode descriptions. For a satisfactory description, a value of 1 would
be expected if the data were uncorrelated and the differences in the
denominators of Eqs. (2.9) and (2.12) could be neglected.
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FIG. 7. Plot of radar-derived rain rate and value obtained from
two-mode fit to histogram for each of 1716 maps, for 280 km X 280
km area in GATE phase 1.

obtained over many rain-rate bins. The “transition”
region from p; to py at around 2-3 mm h™! is not
always captured adequately by the two-mode descrip-
tion, and there may be something to gain in this respect
by adding a third mode.

Another measure of the adequacy of the description
of the histograms can be obtained by comparing the
average rain rate in a rain field with the value predicted
from the fit to the rain-rate histogram. The true area-
averaged rain rate is given by

R(1) = L 2 R(x, 1),

4900 ] (3:7)
and the estimate based on M modes by
. M
R(t) = Z nft)r,, (3.8)
a=1

using (2.3) and (3.4). A plot of R(¢) versus R(?) is
shown in Fig. 7 for the two-mode fits to the 1716 rain-
rate fields of GATE phase 1. The two-mode estimates
and the actual area averages have a correlation of 0.99.
Correlation values for M = 1, 2, and 3 are given in
Table 3.

As another indication of how well the histograms
are fit at each moment, m;(¢) is plotted beneath 7,
and ny in Fig. 5. This is just the amplitude of the next
term in the expansion (2.28) of n(r;, t). It is generally
much smaller than N(t) = ny(t) + n.(t) except during
the few hours of day 188 discussed above. Of the 1216
fields with N(z) > 100 in GATE phase I, 77% have
ratios |m;(2)/N(1)] <0.2.

d. GATE phase II

Data were also analyzed from the second phase of
GATE, which extended from 24 July to 15 August
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TaBLE 3. Correlation of true area-averaged rain rate {Eq. (3.7)]
and estimates [Eq. (3.8)] based on fits to histograms using M modes,
for phase I of GATE. Data for M = 2 are shown in Fig. 7.

M Percent correlation Percent variance explained
1 90.0 81.0
’ 99.0 98.1
3 99.6 99.2

1974 and included 1512 gridded rain-rate maps. The
results are close to those for Phase 1. The first two modes
explain 90.9% of the trace of the matrix diagonalized,
and §,/2, 1 = 46. Some characteristics of the two
modes are given in Table 4. Cheng and Houze (1979)
found that the fraction of rain volume attributable to
stratiform rain dropped in GATE phase 1I to 40%,
whereas we find an increase due to type L rain. The
discrepancy may be due to the larger area and smaller
time intervals centered around 1200 UTC that they
analyzed, as mentioned earlier. Note that the sampling
error is sufficiently large that the change in relative
amounts contributed by the two types of rain from
phase I to phase II is not statistically significant. Sam-
pling error for the ratios found by Cheng and Houze
(1979) are probably larger, since the additional area
analyzed is probably not large enough to offset the re-
duction in sample size from the smaller time period
analyzed. The confidence intervals found here for the
relative areas and volumes of rain are therefore prob-
ably lower limits for the confidence intervals for the
estimates of Cheng and Houze (1979).

e. Including zero rain rates

Up to this point, the histogrammed data n(r;, ?)
have not included the number of grid points with no
measurable rain in them. When a bin is added to count
zero rain rates and the analysis repeated, it is found
that the first three eigenvectors can be recombined into
a mode py(r;) with nearly all its mass concentrated in
the bin ry = 0, and into two modes corresponding to
p. and py obtained above. This is encouraging, since
satellite instruments do not always distinguish rain
from no-rain areas as clearly as radar, and the appli-
cation of this method to satellite data will probably
involve histograms with nonrainy events included.

TABLE 4. Characteristics of two principal modes based on GATE
phase II data, as in Table 2. Uncertainties of relative areas and rain
volumes are estimated to be +0.25.

Relative
I Correlation  Relative rain

Mode (mm h™") time (h) area volume
L (“stratiform™) 34 13 0.74 0.48
H (“convective”) 10.5 6 0.26 0.52
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[ More than two modes -

The need to use three modes when zero-rain-rate
counts are included raises the general issue of employ-
ing more than two modes to describe rain-rate distri-
butions. It is clear from the discussion of Fig. 6 that
variations in the distribution of rain rates in the tran-
sition region 2--5 mm h ™! could be better described by
using three medes instead of two. We find (zero rain
rates not counted ) that the first three eigenvectors can
be combined into three modes, two of which are similar,
to the modes p; and p;-already described but now
peak at lower and higher rain rates, respectively. The
third mode peaks at 2.5 mm h~'. The number of in-
stances of negative n,(¢) diminishes dramatically. There
is, however, an element of subjectivity in the choices
made that is best removed by using the modes obtained
this way as a first guess to obtain modes from the con-
strained nonlinear minimization of (2.9).

4. Discussion

Some possible applications of the method developed
here for describing the variation of rain distributions
in terms of mixtures of component distributions, or
principal modes of variation (PMVs) as they will be
called, will be discussed next, as will some unresolved
issues.

a. Diurnal cycle of rainfall

The original need for the method arose from a desire
to characterize better the diurnal changes in rainfall
statistics. A first use of the method was therefore to
compare the diurnal variations in R(t) [Eq. (3.7)],
n;(t), and ny(2). Bell and Reid (1993) describe a way
to test for the presence of a diurnal cycle in a time
series using the amplitude of a diurnal sinusoid fit to
the entire time series and the sequence of amplitudes
of separate fits of sinusoids to each day of the time
series. The ratio of the square of the amplitude of the
overall fit to the variance of the daily amplitudes de-
termines the significance of the diurnal cycle. As ex-
pected, the diurnal amplitude of n;(¢) is stronger than
that of R(¢), in the sense that the diurnal variation of
ny (1) is significant at the p = 0.017 level, as compared
to p = 0.028 for R(t). Spectral analysis bears this out,
showing a stronger peak at frequency (24 h)™! for ny(?)
compared with R(?). The diurnal variation of ny(t) is
well described by a sinusoid with amplitude +123 about
a mean of 187 (grid points), peaking at 1550 UTC
(1415 LT). Interestingly enough, the diurnal amplitude
of n;(t) is small and does not pass a significance test,
though the fit does peak several hours after the diurnal
maximum of 1;(¢), consistent with the association of
ny(t) and n, (1) with convective and stratiform activity,
respectively. If this association is accepted, then the
diurnal cycle in rainfall is mostly due to the convective
component. The stratiform component, which con-
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tributes one-third to one-half of the total rainfall in
GATE phase I (Table 2), tends to obscure the diurnal
variability.

b. Stochastic rain model

Output from a space-time stochastic rain model de-
veloped to reproduce GATE statistics for satellite sam-
pling studies (Bell et al. 1990) was analyzed using his-
tograms of rain rates from a model field with the same
size and resolution as that of the GATE data. The his-
tograms do not decompose cleanly into two distinct
types, and the correlation times of the amplitudes »1,(¢)
in the expansion (2.28) do not decrease with the rank
a, in contrast with the GATE results. Since the sto-
chastic model was not constructed to reproduce strat-
iform and convective types of rain, it is interesting to
see how clearly the technique described here reveals
this.

¢. The ATI method

The decomposition of rain distributions into PMVs
was used to investigate the success of the ATI method
for estimating area-averaged rain rate using (1.1), The
sensitivity of .S, to varying amounts of stratiform and
convective rain ( or, more precisely, rain of type L and
type H) in the area depends on the threshold r. With
the proper choice, S, becomes independent of the rel-
ative amounts of the two kinds of rain. An optimal
threshold can be selected based on this approach and
will be explored elsewhere.

d. Application to rain gauge data

Since rain gauge data are so plentiful, it is interesting
to ask how such data might be analyzed with the
method described here. The time series from a rain
gauge must first somehow be converted into a series
of histograms. An obvious way to do this would be to
break the time series up into segments, possibly over-
lapping, and histogram each segment. Contempora-
neous data from nearby rain gauges could be combined
to increase the number of samples in each histogram.
Since the histograms should probably contain at the
very least on the order of 100 observations, many years
of data for an isolated gauge would probably be nec-
essary. The method would be best suited to analyzing
seasonal variability in the distribution of rain rates
rather than the hourly changes that could be examined
here with radar data.

e. Labeling grid points

One of the results of PMV analysis is that, for each
image with histogram #(r;, t), the number n,(¢) of
grid points with rain of type « is found. It would clearly
be of interest to be able to identify the type of rain
present at each grid point. A step in that direction
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would be to assign a probability g.(x) that a grid point
x is occupied by rain of type a, with 2, g, = 1. One
plausible way to assign these probabilities would be to
assume that they are proportional to the PMVs for
each type [i.e., g, oc po(r), where r is the rain-rate bin
into which the gridpoint rain rate falls]. The assignment

_ h{)palr)

o« T M
2 ng(t)ps(r)
B=t

has the property that 2, g.(x) = n,(¢) if the PMV fit
to the histogram n(r;, t) is good.

| Other remarks

Satellite datasets, since they consist of sequences of
images, are clearly amenable to analysis using the
methods developed here. The histograms need not be
confined to data from a single instrument or channel;
that is, one set of bins could be assigned to one channel
and another set to another channel.

Numerical schemes for obtaining principal modes
when their number exceeds two or three will need re-
finement. Iterative methods using the principal com-
ponent analysis described here as a starting point seem
to be feasible. Minimization of &, in (3.6), subject to
the constraints (2.4), can be cast as a constrained least-
squares problem and is therefore easier to treat than
minimizing & itself; there is a large literature for solving
such problems.

A number of other issues remain to be explored.
Although the method does not seem to be very sensitive
to bin-size choices nor to the number of bins used in
our experiments, more experience with the method is
needed to suggest objective criteria for making these
decisions. The accuracy of the representation of the
tails of the PMV distributions needs further explora-
tion. Questions concerning how variable the estimates
of PMVs are due to the smallness of the datasets used
to derive them (i.e., sampling errors) need to be ad-
dressed.

A better choice may be possible for the quantity &
in (2.9) that is minimized to find the PMVs. It was
selected with common statistical practice for fitting
distributions to data in mind, but the correlations in
the data and the fact that histogram counts in some
bins sometimes vanish as rain activity shifts from con-
vective to stratiform weaken the arguments for this
choice. It nevertheless has several valuable advantages.
In its linearized form (2.12) the PMVs formed from
linear combinations of the eigenfunctions are always
capable of fitting the overall climatological rain-rate
distribution exactly. Because of its denominator, errors
in the fits contribute to the total error measure in linear
proportion to the histogram count rather than pro-
portionally to the square of the count, as would happen
if a simpler least-squares criterion for the fits were used.
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Each histogram thus contributes to the error linearly
according to the counts in it, so that a few histograms
with a large number of counts do not control the results.

5. Conclusions

Decomposition of time-varying frequency distri-
butions into sums of underlying distributions has a
number of potential applications in precipitation re-
search. PMVs generate a rapid and informative de-
scription of the types of rain in a space-time volume,
useful when trying to characterize large radar- or sat-
ellite-derived datasets. They provide an objective means
for describing changes in rainfall statistics that can be
as interesting as descriptions of total rainfall in an area,
as in the case of the diurnal cycle of rainfall. It may
have application to the development of algorithms for
remote sensing of rain that are based on matching
probability distributions, such as have been described
recently by Rosenfeld et al. (1993) and Wilheit et al.
(1991), and to refinement of methods of estimating
rainfall based on the area covered by rain.

Acknowledgments. Helpful remarks by E. Foufoula,
D. A. Short, and M. Steiner are gratefully acknowl-
edged.

APPENDIX

Details of Eigenvector Solution
to Minimization Problem

A derivation of the vectors x4 that minimize the error
measure (2.21) is given here. Expression (2.21) can be
rewritten in terms of the matrix C defined in (2.22) as

6o = Tr(WCW) — > x;W’CW2x,, (A.1)
8

using the orthonormality property (2.17) assumed for
xz. The vectors xg, constrained to be orthonormal, that
minimize (A1) can be found by setting the derivative
of

6o — 2 2 Ap(xsWx,)
B8 v

(A.2)

with respect to x; to zero, where Ag, are Lagrange mul-
tipliers fixed by the constraints (2.17). This yields the
equation

W2ICW2x, = > Ag WX, (A3)
Y

Clearly any subset of the eigenvectors ¥z = Wx, from
(2.23) are solutions of (A.3), with the Lagrange mul-
tipliers fixed by the constraints (2.17) to take the values

Apy = NgOpy. (A.4)
In order to minimize (A.1), which can be rewritten as

Eo = TH(WCW) — 3 A, (A.5)
B
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choose the subset of M eigenvectors with the largest

eigenvalues, where M is the number of modes p, that

will be formed from the solutions Xg.

The first eigenvector of WCW can be shown to be

wi(r) = [p(r)]'2. (A.6)

To show this, write out explicitly the index summations

implicit in the eigenvalue equation (2.23):

1
[p(r)]'?

M) =2
Wi ; NGO

S —— n(r, On(ry, 1)

[p(r,)]‘” Vi(r).

which becomes, with Ansatz (A.6),

Mp(r)1'? = )]I/Z > n(ri, 1) 22 n(r;, t).
J

[p(r; N (t)
Using the definition of N(¢) in (2.2) and of p(r,) in
(2.11 ) (A.6) is confirmed, and the value of the elgen-
value is obtained:

= > N(1). (A7)
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